Undistillable: Making a Nasty Teacher that Cannot Teach Students

Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang(UC Irvine) ICLR 2021.

Presenter: Dongyu Yao

Background

Knowledge Distillation^[1] -- Model Compression

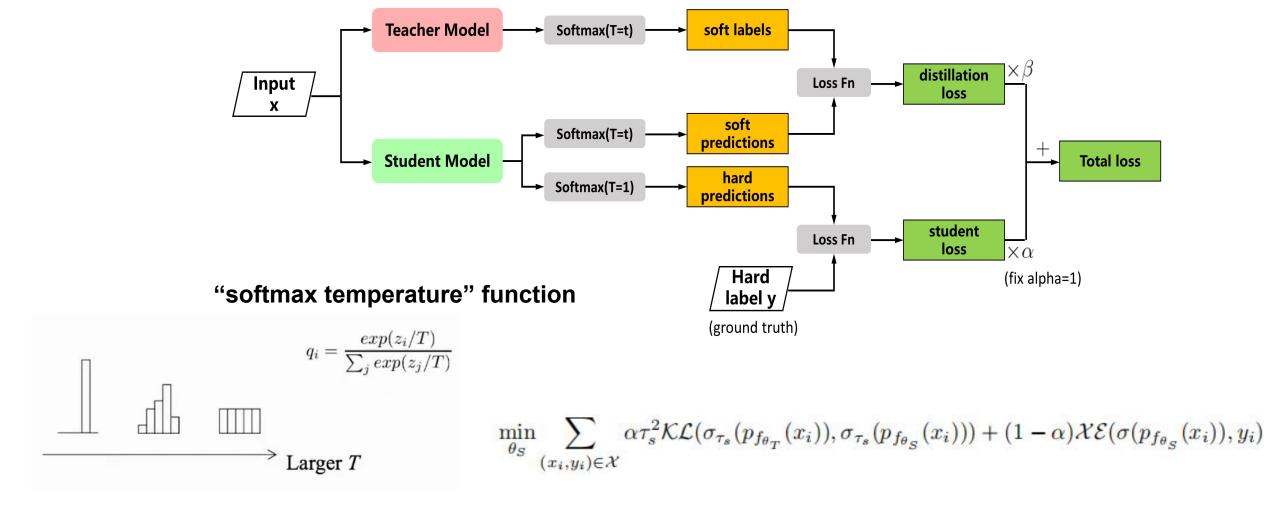
- Transfer useful knowledge from Teacher Network(High accuracy, complex) to Student Network(High accuracy, simple)
- Data Driven KD: Train the Student Network on the same dataset as the Teacher
- Data Free KD: Student Network has no access to the orginal dataset

Intellectual Property Infringement

- Data Driven KD: Easily stealing the well trained model
- Data Free KD: Restoring potential personal training dataset, threating the owner's data privacy and security

Related Work

Knowledge Distillation



Images from: https://nni.readthedocs.io/en/v2.5/TrialExample/KDExample.html

Motivation

How to protect the model?

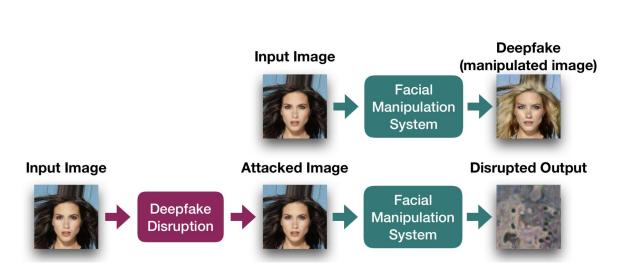
- Train an Undistillable Teacher Model--Nasty Teacher: keep the performance when normally using, but deprecate the performance when distilled into Student Model

Different from Model Watermarking:

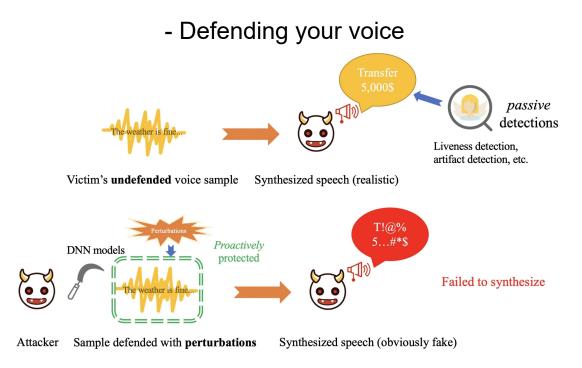
- Watermarking: "Afterwards detection", verifying the ownership via water mark after stolen
- Nasty Teacher: "Proactive defence", making the stolen model unavailable

Does "proactive" sound familiar?

Yes! We have cases on images^[2] and voices^[3]!



- Disrupting Deekfakes

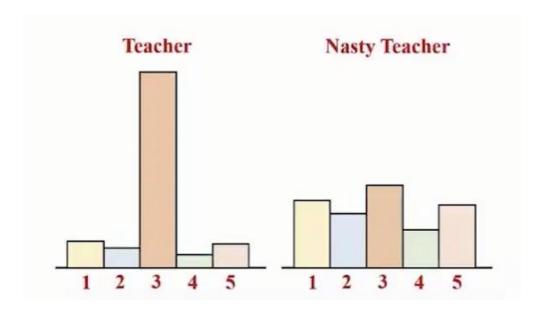


^[2] Ruiz, N et al. 2020. Disrupting deepfakes: Adversarial attacks against conditional image translation networks and facial manipulation systems. In ECCV.

^[3] Huang et al. 2020. Defending Your Voice: Adversarial Attack on Voice Conversion https://arxiv.org/abs/2005.08781

Methodology

- Propose Self-Undermining Knowledge Distillation



$$\min_{\theta_T} \sum_{(x_i, y_i) \in \mathcal{X}} \mathcal{X} \mathcal{E}(\sigma(p_{f_{\theta_T}}(x_i)), y_i) - \omega \tau_A^2 \mathcal{K} \mathcal{L}(\sigma_{\tau_A}(p_{f_{\theta_T}}(x_i)), \sigma_{\tau_A}(p_{f_{\theta_A}}(x_i))),$$

 θ_A : Pretrained parameters(Fix temperature T)

 θ_T : Nasty teacher parameters(only ones to be updated)

 σ_{TA} : "softmax temperature" function

XE: Cross-Entropy loss

KL: Kullback-Leibler divergence loss

Experiment

Results

CIFAR10 (au_{A} =4, ω =0.004), CIFAR100 (au_{A} =20, ω =0.005), Tiny-ImageNet (au_{A} =20, ω =0.01)

Table 1: Experimental results on CIFAR-10.

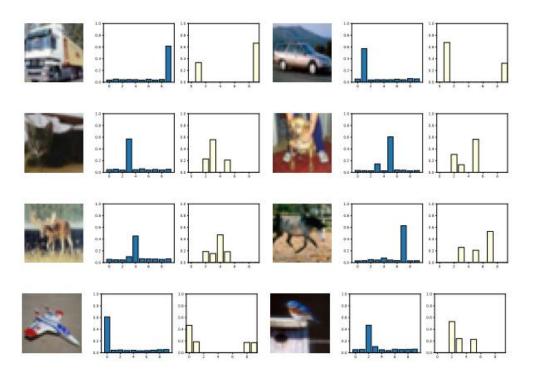
	racie 1. L	Aperimental res	dits on Chilin	10.		
Teacher network	Teacher	Students performance after KD				
	performance	CNN	ResNetC-20	ResNetC-32	ResNet-18	
Student baseline	- 1	86.64	92.28	93.04	95.13	
ResNet-18 (normal)	95.13	87.75 (+1.11)	92.49 (+0.21)	93.31 (+0.27)	95.39 (+0.26)	
ResNet-18 (nasty)	94.56 (-0.57)	82.46 (-4.18)	88.01 (-4.27)	89.69 (-3.35)	93.41 (-1.72)	
Table 2: Experimental results on CIFAR-100.						
Teacher network	Teacher	Students performance after KD				
	performance	Shufflenetv2	MobilenetV2	ResNet-18	Teacher Self	
Student baseline	-	71.17	69.12	77.44	_	
ResNet-18 (normal)	77.44	74.24 (+3.07)	73.11 (+3.99)	79.03 (+1.59)	79.03 (+1.59)	
ResNet-18 (nasty)	77.42(-0.02)	64.49 (-6.68)	3.45 (-65.67)	74.81 (-2.63)	74.81 (-2.63)	
ResNet-50 (normal)	78.12	74.00 (+2.83)	72.81 (+3.69)	79.65 (+2.21)	80.02 (+1.96)	
ResNet-50 (nasty)	77.14 (-0.98)	63.16 (-8.01)	3.36 (-65.76)	71.94 (-5.50)	75.03 (-3.09)	
ResNeXt-29 (normal)	81.85	74.50 (+3.33)	72.43 (+3.31)	80.84 (+3.40)	83.53 (+1.68)	
ResNeXt-29 (nasty)	80.26(-1.59)	58.99 (-12.18)	1.55 (-67.57)	68.52 (-8.92)	75.08 (-6.77)	

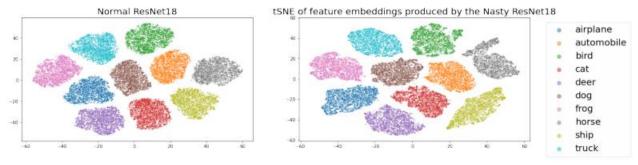
Table 3: Experimental results on Tiny-ImageNet

Teacher network	Teacher	Students performance after KD			
	performance	Shufflenetv2	MobilenetV2	ResNet-18	Teacher Self
Student baseline	-	55.74	51.72	58.73	-
ResNet-18 (normal)	58.73	58.09 (+2.35)	55.99 (+4.27)	61.45 (+2.72)	61.45 (+2.72)
ResNet-18 (nasty)	57.77 (-0.96)	23.16 (-32.58)	1.82 (-49.90)	44.73 (-14.00)	44.73 (-14.00)
ResNet-50 (normal)	62.01	58.01 (+2.27)	54.18 (+2.46)	62.01 (+3.28)	63.91 (+1.90)
ResNet-50 (nasty)	60.06 (-1.95)	41.84 (-13.90)	1.41 (-50.31)	48.24 (-10.49)	51.27 (-10.74)
ResNeXt-29 (normal)	62.81	57.87 (+2.13)	54.34 (+2.62)	62.38 (+3.65)	64.22 (+1.41)
ResNeXt29 (nasty)	60.21 (-2.60)	42.73 (-13.01)	1.09 (-50.63)	54.53 (-4.20)	59.54 (-3.27)

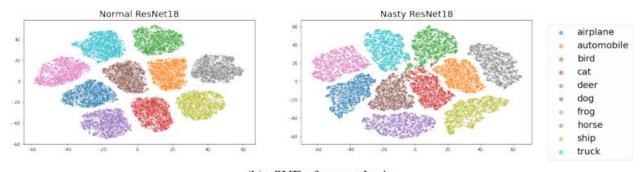
Deeply deprecated

Experiment Quantitative Analysis





(a) tSNE of feature embeddings before fully-connected layer. The dimension of feature embeddings is 512.



(b) tSNE of output logits

The visualization of logit responses after "temperature softmax" function.

Experiment Ablation Study

Adversarial Network

Table 4: Ablation study w.r.t the architecture of the adversarial network $f_{\theta_A}(\cdot)$ on CIFAR-10.

Teacher network	Teacher performance	Students after KD			
		CNN	ResNetC20	ResNetC32	ResNet18
Student baseline		86.64	92.28	93.04	95.13
ResNet18(normal)	95.13	87.75 (+1.11)	92.49 (+0.21)	93.31 (+0.27)	95.39 (+0.26)
ResNet18(ResNet18)	94.56 (-0.57)	82.46 (-4.18)	88.01 (-4.27)	89.69 (-3.35)	93.41 (-1.72)
ResNet18(CNN)	93.82 (-1.31)	77.12 (-9.52)	88.32 (-3.96)	90.40 (-2.64)	94.05 (-1.08)
ResNet18(ResNeXt-29)	94.55 (-0.58)	82.75 (-3.89)	88.17 (-4.11)	89.48 (-3.56)	93.75 (-1.38)

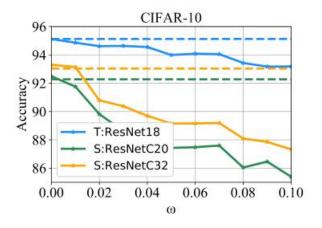
Student Network

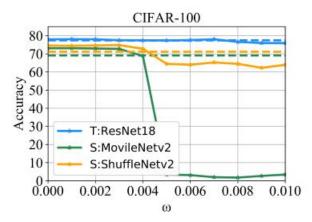
Table 5: Ablation study w.r.t the architecture of the student networks.

Dataset	CIFA	AR-10	CIFAR-100		
Student network	ResNet-50	ResNeXt-29	ResNet-50	ResNeXt-29	
Student baseline	94.98	95.60	78.12	81.85	
KD from ResNet-18 (normal)	94.45 (-0.53)	95.92 (+0.32)	79.94 (+1.82)	82.14 (+0.29)	
KD from ResNet-18 (nasty)	93.13 (-1.85)	92.20 (-3.40)	74.28 (-3.84)	78.88 (-2.97)	

Hyper parameters w

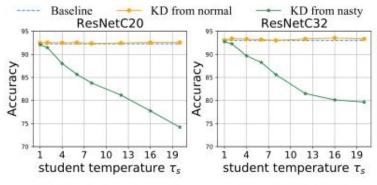
$$\min_{\theta_T} \sum_{(x_i, y_i) \in \mathcal{X}} \mathcal{X} \mathcal{E}(\sigma(p_{f_{\theta_T}}(x_i)), y_i) - \omega \tau_A^2 \mathcal{K} \mathcal{L}(\sigma_{\tau_A}(p_{f_{\theta_T}}(x_i)), \sigma_{\tau_A}(p_{f_{\theta_A}}(x_i))),$$

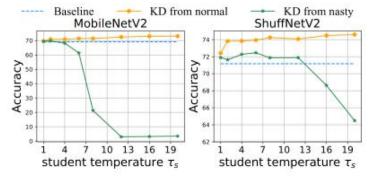




Ablation Study

Temperature T_s In KD

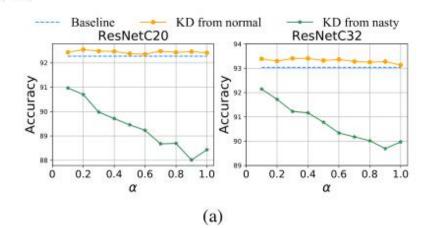




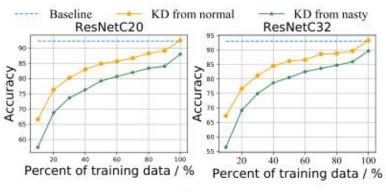
- (a) Nasty teacher with $\tau_A = 4$ on CIFAR-10
- (b) Nasty teacher with $\tau_A = 20$ on CIFAR-100

KL Ratio α In KD

$$\min_{\theta_S} \sum_{(x_i, y_i) \in \mathcal{X}} \alpha \tau_s^2 \mathcal{KL}(\sigma_{\tau_s}(p_{f_{\theta_T}}(x_i)), \sigma_{\tau_s}(p_{f_{\theta_S}}(x_i))) + (1 - \alpha) \mathcal{XE}(\sigma(p_{f_{\theta_S}}(x_i)), y_i)$$



Percentage of Training Samples



NASTY TEACHER ON DATA-FREE KD

DAFL

Table 6: Data-free KD from nasty teacher on CIFAR-10 and CIFAR-100

dataset	CIFAR	-10	CIFAR-100		
Teacher Network	Teacher Accuracy	DAFL	Teacher Accuracy	DAFL	
ResNet34 (normal)	95.42	92.49	76.97	71.06	
ResNet34 (nasty)	94.54 (-0.88)	86.15 (-6.34)	76.12 (-0.79)	65.67 (-5.39)	

DeepInversion

(a) Normal Teacher

(b) Nasty Teacher

Some thoughts

· Can we simply add perturbations to the output logits instead of training an adversarial network?

Transfer this idea into other areas: image processing; semantic segmentation

Thank you